Digital Methods to Study (and Reduce) the Impact of Disinformation

Authors

  • Miriam Di Lisio University of Naples Federico II, Italy
  • Domenico Trezza University of Naples Federico II, Italy

Keywords:

Digital methods, Fake news, Supervised classification, Text analysis

Abstract

Social media have democratized communication but have led to the explosion of the so-called "fake news" phenomenon. This problem has visible implications on global security, both political (e.g.the QANON case) and health (anti-Covid vaccination and No-Vax fake news). Models that detect the problem in real time and on large amounts of data are needed. Digital methods and text classification procedures are able to do this through predictive approaches to identify a suspect message or author. This paper aims to apply a supervised model to the study of fake news on the Twittersphere to highlight its potential and preliminary limitations. The case study is the infodemic generated on social media during the first phase of the COVID-19 emergency. The application of the supervised model involved the use of a training and testing dataset. The different preliminary steps to build the training dataset are also shown, highlighting, with a critical approach, the challenges of working with supervised algorithms. Two aspects emerge. The first is that it is important to block the sources of bad information, before the information itself. The second is that algorithms could be sources of bias. Social media companies need to be very careful about relying on automated classification.

Author Biography

Miriam Di Lisio, University of Naples Federico II, Italy

Ph.D student in Statistics and Social Science Department of Social Sciences - University of Naples Federico II - Italy
Vico Monte di Pietà 1, Naples mobile +39-3498568221 email miriam.dilisio@unina.it

References

Allcott, H., Gentzkow, M.,&Yu, C., (2018). Trends in the diffusion of misinformation on social media, in ResearchGate, april 2018.

Brainard, J.,& Hunter, P., (2019). Misinformation making a disease outbreak worse: outcomes compared for influenza, monkeypox, and norovirus, in Sage Journal, 12 Novembre 2019 [https://journals.sagepub.com/doi/pdf/10.1177/0037549719885021].

Brennen, J. S., Simon, F. M., &Nielsen, R. K., (2020). Beyond (Mis)Representation: Visuals in COVID-19 Misinformation, in The International Journal of Press/Politics, October 2020 [https://journals.sagepub.com/doi/pdf/10.1177/1940161220964780]

Caruana, R., &Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).

Castillo, C., Mendoza, M., &Poblete, B., (2011). Information credibility on Twitter, in ResearchGate, january 2011.

Chiusaroli, F., & Zanzotto, F. M. (a cura di), (2012). Scritture brevi di oggi. Quaderni di Linguistica Zero, 1, Napoli, Università degli studi di Napoli “L’Orientale”, ISBN: 978-88-6719-017-1.

Coltelli, M. (2018). The Black List | Butac - Bufale Un Tanto Al Chilo.

Del Vicario, M., Vivaldo, G., Bessi, A., Zollo, F., Scala, A., Caldarelli,G., & Quattrociocchi, W., (2016). EchoChambers: EmotionalContagion and Group Polarization on Facebook, in Scientific Reports 6, articlenumber: 37825.

Lamsal, R., (2020). Coronavirus (Covid-19) tweets dataset, in IEEE DataPort [https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset].

Marmo, R., (2020). Algoritmi per l'intelligenza artificiale. Progettazione dell'algoritmo, dati e machine learning, neural network, deeplearning, Hoepli, Milano.

Orso, D., Federici, N., Copetti, R., &Vetrugno, L., (2020). Infodemic and the spread of fake news in the COVID-19-era, in European Journal of Emergency Medicine, april 2020.

Pira, F., &Altinier, A., (2018), Giornalismi. La difficile convivenza con fake news e misinformation, libreriauniversitaria.it, Cassino (FR).

Pulido, C. M., Villarejo-Carballido, B., Redondo-Sama, G., &Gòmez, A., (2020). COVID-19 infodemic: More retweets for science-based information on coronavirus than for false information, in International Sociology [https://www.researchgate.net/publication/340658737_COVID19_infodemic_More_retweets_for_science-based_information_on_coronavirus_than_for_false_information].

Quattrociocchi, W., & Vicini, A., (2016). Misinformation. Guida alla società? dell'informazione e della credulità, Franco Angeli, Milano.

Sala, M., & Scaglioni, M., (2020). L’altro virus, comunicazione e disinformazione al tempo del covid-19, Vita e Pensiero, Milano.

Vosoughi, S., Roy, D., & Aral, S., (2018). The spread of true and false news online, in ResearchGate, march 2018 [https://www.researchgate.net/publication/323649207_The_spread_of_true_and_false_news_online].

Zhou, X., & Zafarani, R., (2020). A Survey of Fake News: Fundamental Theories, Detection Methods, and Opportunities, in ACM Computing Surveys, september 2020, Article n. 109.

Downloads

Published

2021-10-01