The Topics-scape of the Pandemic Crisis: The Italian Sentiment on Political Leaders

Keywords: Emotional Text Mining, Political Debate, Twitter

Abstract

The aim of the article is to identify themes, actors and mood of the tweets shared by users in the period from March 25 to April 3, 2020 in Italy. It seems an extremely delicate and complex period, because it corresponds to the first phase of the lockdown, introduced following the Covid-19 pandemic. It was a period characterized by emergency and crisis, with nuances related to fear and uncertainty. We assumed that this situation could have influenced and produced effects on the ideologically oriented digital language practice. Taking this background into consideration, we have scraped the messages containing the surnames of the Italian Premier and the one of the opposition leader from Twitter, in order to identify the debate connected to them and to the crisis. To achieve this goal, we performed a computational linguistic technique, Emotinal Text Mining. The first result reconstructs the landscape of the debate. Arising topics-scape drawn by: the leader, the players, the economy, the entertainment, the politic, the skill, and the guilt. Then, representations were identified and sentiments measured.

References

Balbi, S., Misuraca, M., &Scepi, G. (2018). Combining different evaluation systems on social media for measuring user satisfaction. Information Processing and Management, 54(4), 674-685.

Blackledge A. (2005). Discourse and Power in a Multilingual World. Amsterdam/Philadel-phia: John Benjamins.

Blommaert J. (1999). The debate is open. In J. Blommaert (ed.), Language Ideological Debates (pp. 1–38). Berlin: Mouton de Gruyter.

Boccia Artieri G., La Rocca G. (2019). La risonanza mediale degli eventi. Un’analisi del racconto delle dimissioni e dell‘elezione dei Pontefici su Twitter. Problemidell’informazione, 3, pp. 571-598.

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8.

Bonilla Y., Rosa J. (2015). #Ferguson: Digital protest, hashtag ethnography, and the racial politics of social media in the United States. American Ethnologist, 00(0): 4–16.

Bourdieu P. (1991). Language and Symbolic Power. Cambridge: Polity Press.

Boyd D. (2010). Social Network Sites as Networked Publics: Affordances, Dynamics, and Implications. In Z. Papacharissi (ed.), A Networked Self: Identity, Community, and Culture on Social Network Sites (pp.39-58). New York: Routledge.

Bruns A., Burgess J. (2015). Twitter hashtags from ad hoc to calculated publics. In N. Rambukkana (Ed.), Hashtag Publics: The Power and Politics of Discursive Networks (pp. 13-28). New York: Peter Lang.

Ceron, A., Curini, L., &Iacus, S. (2013). Social Media e Sentiment Analysis. L’evoluzione dei fenomeni sociali attraverso la Rete. Milano: Springer.

Cordella, B., Greco, F., Carlini, K., Greco, A., &Tambelli, R. (2018a). Infertilita e procreazione assistita: evoluzione legislativa e culturale in Italia. Rassegna di Psicologia, 35(3), 45–56. https://doi.org/10.4458/1415-04.

Cordella, B., Greco, F., Meoli, P., Palermo, V., & Grasso, M. (2018b). Is the educational culture in Italian Universities effective? A case study. In D. F. Iezzi, L. Celardo, & M. Misuraca (Eds.). JADT’ 18: Proceedings of the 14th International Conference on Statistical Analysis of Textual Data (pp. 157–164). Rome, IT: Universitalia.

D.P.C.M. (2020). Disposizioni attuative del decreto-legge 23 febbraio 2020, n. 6, recante misure urgenti in materia di contenimento e gestione dell’emergenza epidemiologica da COVID-19. (20A01228). Gazzetta Ufficiale, n.45 del 23-2-2020.

D.P.C.M. (2020). Ulteriori disposizioni attuative del decreto-legge 23 febbraio 2020, n. 6, recante misure urgenti in materia di contenimento e gestione dell’emergenza epidemiologica da COVID-19, applicabili sull’intero territorio nazionale. (20A01475). Gazzetta UfficialeSerie Generale, n.55 del 04-03-2020)

D.P.C.M. (2020). Ulteriori disposizioni attuative del decreto-legge 23 febbraio 2020, n. 6, recante misure urgenti in materia di contenimento e gestione dell’emergenza epidemiologica da COVID-19, applicabili sull’intero territorio nazionale. (20A01807). Gazzetta UfficialeSerie Generale, n.76 del 22-03-2020.

Döveling K., Harju A.A., Sommer D. (2018). From Mediatized Emotion to Digital Affect Cultures: New Technologies and Global Flow of Emotion. Social Media + Society, 4, 1-11.

FronzettiColladon, A. (2018). The Semantic Brand Score. Journal of Business Research, 88, 150–160.

Gal S., Woolard K.A. (eds.) (2001). Languages and Publics: The Making of Authority. Manchester, UK and Northampton, MA: St. Jerome Press.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.

Giuliano, L., & La Rocca, G. (2010). Analisi automatica e semi-automatica dei dati testuali. Vol. II. Milano: Led.

Gloor, P.A. (2017). Sociometrics and human relationships: Analyzing social networks to manage brands, predict trends, and improve organizational performance. London, UK: Emerald Publishing Limited.

Greco, F. (2016a). Integrare la disabilità. Una metodologia interdisciplinare per leggere il cambiamento culturale. Milano: Franco Angeli.

Greco, F. (2016b). Les Lois et le changementculturel: Le handicap en Italie et en France. Roma : Sapienza Università Editrice.

Greco, F. (2019). Il dibattito sulla migrazione in campagna elettorale: Confronto tra il caso francese e italiano. Culture e Studi nel Sociale, 4(2), 205-13.

Greco, F., &Polli, A. (2019). Vaccines In Italy: The Emotional Text Mining of Social Media. Rivista Italiana di Economia Demografia e Statistica, 73(1), 89-98.

Greco, F., &Polli, A. (2020a). Emotional Text Mining: Customer profiling in brand management. InternationalJournal of Information Management, 51. DOI: 10.1016/j.ijinfomgt.2019.04.007

Greco, F., &Polli, A. (2020b). Security Perception and People Well-Being. Social Indicator Research, 1-18.https://doi.org/10.1007/s11205-020-02341-8

Greco, F., Alaimo, L. &Celardo L. (2018a). Brexit and Twitter: The voice of people. In D.F. Iezzi, L. Celardo& M. Misuraca (Eds.), JADT’ 18: Proceedings of the 14th International Conference on Statistical Analysis of Textual Data, pp. 327-334. Roma: Universitalia.

Greco, F., Celardo, L., &Alaimo, L.M. (2018b). Brexit in Italy: Text Mining of Social Media. In Abbruzzo, A., Piacentino, D., Chiodi, M., &Brentari, E. (Eds.), Book of short Papers SIS 2018, pp. 767-772. Milano: Pearson.

Greco, F., Maschietti, D., &Polli, A. (2017). Emotional text mining of social networks: The French pre-electoral sentiment on migration. RIEDS, 71(2):125-136.

Greco, F., Monaco, S., Di Trani, M., & Cordella, B. (2019).Emotional text mining and health psychology: the culture of organ donation in Spain. In M. Carpita and L. Fabbris (Eds.), ASA Conference 2019 - Book od Short Papers Statistics for Health and Well-being, University of Brescia, September 25-27, 2019 (pp. 125-129). Padova: CLEUP.

Johnson S. (2005a). Spelling Trouble: Language, Ideology and the Reform of German Orthogra¬phy. Clevedon, UK: Multilingual Matters.

Johnson S. (2005b). “Sonstkannjederschreiben, wieer will…”? Orthography, legitimation, and the construction of publics. German Life and Letters 58(4): 453–70.

Johnson S., Ensslin A. (Eds.) (2007). Language in the Media: Representations, Identities, Ideologies. London: Continuum.

Kearney, M.W. (2020). rtweet. R package version 0.7.6. https://CRAN.R-project.org/package=rtweet

La Rocca G. (2020). Possible selves of a hashtag: Moving from the theory of speech acts to cultural objects to interpret hashtags. International Journal of Sociology and Anthropology, 12(1): 1-9.

La Rocca G., Martínez-Torvisco J. (2017). Anamorfosi del terrorismo. La narrazione degli attacchi terroristici nella stampa italiana. Mediascapes Journal, pp. 178-193.

Lancia, F. (2018). User’s Manual: Tools for text analysis. T-Lab version Plus 2018.

Laricchiuta, D., Greco, F., Piras, F., Cordella, B., Cutuli, D., Picerni, E., et al. (2018). “The grief that doesn’t speak”: Text mining and brain structure. In D.F. Iezzi, L. Celardo, & M. Misuraca (Eds.). JADT’ 18: Proceedings of the 14th International Conference on Statistical Analysis of Textual Data (pp. 419– 427). Rome, IT: Universitalia.

Lebart, L., & Salem, A. (1994). StatistiqueTextuelle. Paris, FR: Dunod.

Liu, B. (2012). Sentiment analysis: Mining opinions, sentiments, and emotions. Sentiment analysis: Mining opinions, sentiments, and emotions (pp. 1-367). Morgan & Claypool.

McCombs, M.E., & Shaw, D.L. (1972). The Agenda-Setting Function of Mass Media. The Public Opinion Quarterly, 36(2), 176-187.

Milani T. M. (2007). Voices of endangerment: A language ideological debate on the Swed-ish language. In A. Duchêne& M. Heller (eds.), Discourses of Endangerment: Ide¬ology and Interest in the Defence of Languages (pp. 169–196). London/New York: Continuum.

Milani T.M., Johnson S. (2008).Language politics and legitimation crisis in Sweden. A Habermasian approach. Language Problems & Language Planning, 32(1): 1–22.

Rambukkana N. (eds.) (2015), Hashtag Publics. The Power and Politics of Discursive Networks, New York: Peter Lang.

Savaresi, S. M., Boley, D. L. 2004. A comparative analysis on the bisecting k-means and the PDDP clustering algorithms. Intelligent Data Analysis, Vol. 8. No. 4, pp. 345-362.

Scialoja A. (2020). Parla il sociologo. Edgar Morin: «Per l’uomo è tempo di ritrovare se stesso». Avvenire.it, ultimo accesso 17/04/2020 https://www.avvenire.it/amp/agora/pagine/per-luomo-tempo-di-ritrovare-se-stesso

Stroud C. (2004). Rinkeby Swedish and semilingualism in language ideological de¬bates: A Bourdieuean perspective. Journal of Sociolinguistics, 8(2): 163–230.

Tettegah S.Y. (Ed.) (2016). Emotions, Technology, and Social Media. Amsterdam, The Netherlands: Elsevier.

Zhao, Y., Yu, F., Jing, B., Hu, X., Luo, A., & Peng, K. (2019). An analysis of well-being determinants at the city level in china using big data.Social Indicators Research, 143(3), 973-994.

Published
2020-05-30
Section
Esperienze e confronti [Experiences and comparisons]